Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Hum Brain Mapp ; 45(5): e26580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520359

RESUMO

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of 26 participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n = 20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Autopsia , Algoritmos
2.
Hum Brain Mapp ; 45(2): e26570, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339908

RESUMO

Head motion correction is particularly challenging in diffusion-weighted MRI (dMRI) scans due to the dramatic changes in image contrast at different gradient strengths and directions. Head motion correction is typically performed using a Gaussian Process model implemented in FSL's Eddy. Recently, the 3dSHORE-based SHORELine method was introduced that does not require shell-based acquisitions, but it has not been previously benchmarked. Here we perform a comprehensive evaluation of both methods on realistic simulations of a software fiber phantom that provides known ground-truth head motion. We demonstrate that both methods perform remarkably well, but that performance can be impacted by sampling scheme and the extent of head motion and the denoising strategy applied before head motion correction. Furthermore, we find Eddy benefits from denoising the data first with MP-PCA. In sum, we provide the most extensive known benchmarking of dMRI head motion correction, together with extensive simulation data and a reproducible workflow. PRACTITIONER POINTS: Both Eddy and SHORELine head motion correction methods performed quite well on a large variety of simulated data. Denoising with MP-PCA can improve head motion correction performance when Eddy is used. SHORELine effectively corrects motion in non-shelled diffusion spectrum imaging data.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Movimento (Física) , Simulação por Computador , Encéfalo/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
3.
Transl Psychiatry ; 14(1): 87, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341414

RESUMO

Although neuroimaging has been widely applied in psychiatry, much of the exuberance in decades past has been tempered by failed replications and a lack of definitive evidence to support the utility of imaging to inform clinical decisions. There are multiple promising ways forward to demonstrate the relevance of neuroimaging for psychiatry at the individual patient level. Ultra-high field magnetic resonance imaging is developing as a sensitive measure of neurometabolic processes of particular relevance that holds promise as a new way to characterize patient abnormalities as well as variability in response to treatment. Neuroimaging may also be particularly suited to the science of brain stimulation interventions in psychiatry given that imaging can both inform brain targeting as well as measure changes in brain circuit communication as a function of how effectively interventions improve symptoms. We argue that a greater focus on individual patient imaging data will pave the way to stronger relevance to clinical care in psychiatry. We also stress the importance of using imaging in symptom-relevant experimental manipulations and how relevance will be best demonstrated by pairing imaging with differential treatment prediction and outcome measurement. The priorities for using brain imaging to inform psychiatry may be shifting, which compels the field to solidify clinical relevance for individual patients over exploratory associations and biomarkers that ultimately fail to replicate.


Assuntos
Transtornos Mentais , Psiquiatria , Humanos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/terapia , Neuroimagem/métodos , Imageamento por Ressonância Magnética , Psiquiatria/métodos , Encéfalo
4.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224541

RESUMO

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Feminino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Transtornos Psicóticos/complicações , Substância Cinzenta/diagnóstico por imagem
5.
Nat Commun ; 14(1): 8411, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110396

RESUMO

Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across matched discovery (n = 3525) and replication (n = 3447) samples, the total cortical representation of fronto-parietal PFNs positively correlates with general cognition. Cross-validated ridge regressions trained on PFN topography predict cognition in unseen data across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.


Assuntos
Individualidade , Imageamento por Ressonância Magnética , Humanos , Adolescente , Imageamento por Ressonância Magnética/métodos , Encéfalo , Cognição , Testes Neuropsicológicos , Mapeamento Encefálico
6.
Cell Rep ; 42(12): 113487, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995188

RESUMO

During adolescence, the brain undergoes extensive changes in white matter structure that support cognition. Data-driven approaches applied to cortical surface properties have led the field to understand brain development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. Although white matter development also appears asynchronous, previous studies have relied largely on anatomical tract-based atlases, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Harnessing advances in diffusion modeling and machine learning, we identified 14 data-driven patterns of covarying white matter structure in a large sample of youth. Fiber covariance networks aligned with known major tracts, while also capturing distinct patterns of spatial covariance across distributed white matter locations. Most networks showed age-related increases in fiber network properties, which were also related to developmental changes in executive function. This study delineates data-driven patterns of white matter development that support cognition.


Assuntos
Substância Branca , Humanos , Adolescente , Função Executiva , Encéfalo , Cognição
7.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014137

RESUMO

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about the spatial structure of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genomics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose Network Enrichment Significance Testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study phenotype associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.

8.
Neurosci Biobehav Rev ; 154: 105421, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37802267

RESUMO

Functional magnetic resonance imaging (fMRI) is increasingly used to non-invasively study the acute impact of psychedelics on the human brain. While fMRI is a promising tool for measuring brain function in response to psychedelics, it also has known methodological challenges. We conducted a systematic review of fMRI studies examining acute responses to experimentally administered psychedelics in order to identify convergent findings and characterize heterogeneity in the literature. We reviewed 91 full-text papers; these studies were notable for substantial heterogeneity in design, task, dosage, drug timing, and statistical approach. Data recycling was common, with 51 unique samples across 91 studies. Fifty-seven studies (54%) did not meet contemporary standards for Type I error correction or control of motion artifact. Psilocybin and LSD were consistently reported to moderate the connectivity architecture of the sensorimotor-association cortical axis. Studies also consistently reported that ketamine administration increased activation in the dorsomedial prefrontal cortex. Moving forward, use of best practices such as pre-registration, standardized image processing and statistical testing, and data sharing will be important in this rapidly developing field.


Assuntos
Alucinógenos , Ketamina , N-Metil-3,4-Metilenodioxianfetamina , Humanos , Alucinógenos/farmacologia , Ketamina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Psilocibina/farmacologia , Encéfalo/diagnóstico por imagem
9.
Dev Cogn Neurosci ; 62: 101265, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37327696

RESUMO

Delay discounting is a measure of impulsive choice relevant in adolescence as it predicts many real-life outcomes, including obesity and academic achievement. However, resting-state functional networks underlying individual differences in delay discounting during youth remain incompletely described. Here we investigate the association between multivariate patterns of functional connectivity and individual differences in impulsive choice in a large sample of children, adolescents, and adults. A total of 293 participants (9-23 years) completed a delay discounting task and underwent 3T resting-state fMRI. A connectome-wide analysis using multivariate distance-based matrix regression was used to examine whole-brain relationships between delay discounting and functional connectivity. These analyses revealed that individual differences in delay discounting were associated with patterns of connectivity emanating from the left dorsal prefrontal cortex, a default mode network hub. Greater delay discounting was associated with greater functional connectivity between the dorsal prefrontal cortex and other default mode network regions, but reduced connectivity with regions in the dorsal and ventral attention networks. These results suggest delay discounting in children, adolescents, and adults is associated with individual differences in relationships both within the default mode network and between the default mode and networks involved in attentional and cognitive control.


Assuntos
Conectoma , Desvalorização pelo Atraso , Humanos , Adulto , Adolescente , Criança , Individualidade , Mapeamento Encefálico/métodos , Córtex Pré-Frontal , Encéfalo , Imageamento por Ressonância Magnética , Vias Neurais
10.
Am J Clin Nutr ; 118(1): 121-131, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146760

RESUMO

BACKGROUND: Iron is essential to brain function, and iron deficiency during youth may adversely impact neurodevelopment. Understanding the developmental time course of iron status and its association with neurocognitive functioning is important for identifying windows for intervention. OBJECTIVES: This study aimed to characterize developmental change in iron status and understand its association with cognitive performance and brain structure during adolescence using data from a large pediatric health network. METHODS: This study included a cross-sectional sample of 4899 participants (2178 males; aged 8-22 y at the time of participation, M [SD] = 14.24 [3.7]) who were recruited from the Children's Hospital of Philadelphia network. Prospectively collected research data were enriched with electronic medical record data that included hematological measures related to iron status, including serum hemoglobin, ferritin, and transferrin (33,015 total samples). At the time of participation, cognitive performance was assessed using the Penn Computerized Neurocognitive Battery, and brain white matter integrity was assessed using diffusion-weighted MRI in a subset of individuals. RESULTS: Developmental trajectories were characterized for all metrics and revealed that sex differences emerged after menarche such that females had reduced iron status relative to males [all R2partial > 0.008; all false discovery rates (FDRs) < 0.05]. Higher socioeconomic status was associated with higher hemoglobin concentrations throughout development (R2partial = 0.005; FDR < 0.001), and the association was greatest during adolescence. Higher hemoglobin concentrations were associated with better cognitive performance during adolescence (R2partial = 0.02; FDR < 0.001) and mediated the association between sex and cognition (mediation effect = -0.107; 95% CI: -0.191, -0.02). Higher hemoglobin concentration was also associated with greater brain white matter integrity in the neuroimaging subsample (R2partial = 0.06, FDR = 0.028). CONCLUSIONS: Iron status evolves during youth and is lowest in females and individuals of low socioeconomic status during adolescence. Diminished iron status during adolescence has consequences for neurocognition, suggesting that this critical period of neurodevelopment may be an important window for intervention that has the potential to reduce health disparities in at-risk populations.


Assuntos
Encéfalo , Ferro , Humanos , Feminino , Adolescente , Masculino , Criança , Estudos Transversais , Encéfalo/diagnóstico por imagem , Cognição , Hemoglobinas/análise , Classe Social
11.
Psychol Med ; : 1-10, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36987693

RESUMO

BACKGROUND: Neuropsychiatric disorders are common in 22q11.2 Deletion Syndrome (22q11DS) with about 25% of affected individuals developing schizophrenia spectrum disorders by young adulthood. Longitudinal evaluation of psychosis spectrum features and neurocognition can establish developmental trajectories and impact on functional outcome. METHODS: 157 youth with 22q11DS were assessed longitudinally for psychopathology focusing on psychosis spectrum symptoms, neurocognitive performance and global functioning. We contrasted the pattern of positive and negative psychosis spectrum symptoms and neurocognitive performance differentiating those with more prominent Psychosis Spectrum symptoms (PS+) to those without prominent psychosis symptoms (PS-). RESULTS: We identified differences in the trajectories of psychosis symptoms and neurocognitive performance between the groups. The PS+ group showed age associated increase in symptom severity, especially negative symptoms and general nonspecific symptoms. Correspondingly, their level of functioning was worse and deteriorated more steeply than the PS- group. Neurocognitive performance was generally comparable in PS+ and PS- groups and demonstrated a similar age-related trajectory. However, worsening executive functioning distinguished the PS+ group from PS- counterparts. Notably, of the three executive function measures examined, only working memory showed a significant difference between the groups in rate of change. Finally, structural equation modeling showed that neurocognitive decline drove the clinical change. CONCLUSIONS: Youth with 22q11DS and more prominent psychosis features show worsening of symptoms and functional decline driven by neurocognitive decline, most related to executive functions and specifically working memory. The results underscore the importance of working memory in the developmental progression of psychosis.

12.
Neuroimage ; 271: 120037, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931330

RESUMO

Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data.


Assuntos
Substância Branca , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Software , Projetos de Pesquisa , Modelos Estatísticos
13.
Nat Neurosci ; 26(4): 638-649, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973514

RESUMO

Animal studies of neurodevelopment have shown that recordings of intrinsic cortical activity evolve from synchronized and high amplitude to sparse and low amplitude as plasticity declines and the cortex matures. Leveraging resting-state functional MRI (fMRI) data from 1,033 youths (ages 8-23 years), we find that this stereotyped refinement of intrinsic activity occurs during human development and provides evidence for a cortical gradient of neurodevelopmental change. Declines in the amplitude of intrinsic fMRI activity were initiated heterochronously across regions and were coupled to the maturation of intracortical myelin, a developmental plasticity regulator. Spatiotemporal variability in regional developmental trajectories was organized along a hierarchical, sensorimotor-association cortical axis from ages 8 to 18. The sensorimotor-association axis furthermore captured variation in associations between youths' neighborhood environments and intrinsic fMRI activity; associations suggest that the effects of environmental disadvantage on the maturing brain diverge most across this axis during midadolescence. These results uncover a hierarchical neurodevelopmental axis and offer insight into the progression of cortical plasticity in humans.


Assuntos
Córtex Sensório-Motor , Animais , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Imageamento por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico/métodos , Bainha de Mielina
14.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865219

RESUMO

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of twenty-six participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n=20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.

15.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798354

RESUMO

The white matter architecture of the human brain undergoes substantial development throughout childhood and adolescence, allowing for more efficient signaling between brain regions that support executive function. Increasingly, the field understands grey matter development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. While white matter development also appears asynchronous, previous studies have largely relied on anatomical atlases to characterize white matter tracts, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Here, we leveraged advances in diffusion modeling and unsupervised machine learning to delineate white matter fiber covariance networks comprised of structurally similar areas of white matter in a cross-sectional sample of 939 youth aged 8-22 years. We then evaluated associations between fiber covariance network structural properties with both age and executive function using generalized additive models. The identified fiber covariance networks aligned with the known architecture of white matter while simultaneously capturing novel spatial patterns of coordinated maturation. Fiber covariance networks showed heterochronous increases in fiber density and cross section that generally followed hierarchically organized temporal patterns of cortical development, with the greatest increases in unimodal sensorimotor networks and the most prolonged increases in superior and anterior transmodal networks. Notably, we found that executive function was associated with structural features of limbic and association networks. Taken together, this study delineates data-driven patterns of white matter network development that support cognition and align with major axes of brain maturation.

16.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747838

RESUMO

Delay discounting is a measure of impulsive choice relevant in adolescence as it predicts many real-life outcomes, including substance use disorders, obesity, and academic achievement. However, the functional networks underlying individual differences in delay discounting during youth remain incompletely described. Here we investigate the association between multivariate patterns of functional connectivity and individual differences in impulsive choice in a large sample of youth. A total of 293 youth (9-23 years) completed a delay discounting task and underwent resting-state fMRI at 3T. A connectome-wide analysis using multivariate distance-based matrix regression was used to examine whole-brain relationships between delay discounting and functional connectivity was then performed. These analyses revealed that individual differences in delay discounting were associated with patterns of connectivity emanating from the left dorsal prefrontal cortex, a hub of the default mode network. Delay discounting was associated with greater functional connectivity between the dorsal prefrontal cortex and other parts of the default mode network, and reduced connectivity with regions in the dorsal and ventral attention networks. These results suggest that delay discounting in youth is associated with individual differences in relationships both within the default mode network and between the default mode and networks involved in attentional and cognitive control.

17.
Cereb Cortex ; 33(4): 1058-1073, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35348659

RESUMO

Socioeconomic status (SES) can impact cognitive performance, including working memory (WM). As executive systems that support WM undergo functional neurodevelopment during adolescence, environmental stressors at both individual and community levels may influence cognitive outcomes. Here, we sought to examine how SES at the neighborhood and family level impacts task-related activation of the executive system during adolescence and determine whether this effect mediates the relationship between SES and WM performance. To address these questions, we studied 1,150 youths (age 8-23) that completed a fractal n-back WM task during functional magnetic resonance imaging at 3T as part of the Philadelphia Neurodevelopmental Cohort. We found that both higher neighborhood SES and parental education were associated with greater activation of the executive system to WM load, including the bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and precuneus. The association of neighborhood SES remained significant when controlling for task performance, or related factors like exposure to traumatic events. Furthermore, high-dimensional multivariate mediation analysis identified distinct patterns of brain activity within the executive system that significantly mediated the relationship between measures of SES and task performance. These findings underscore the importance of multilevel environmental factors in shaping executive system function and WM in youth.


Assuntos
Função Executiva , Memória de Curto Prazo , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Memória de Curto Prazo/fisiologia , Função Executiva/fisiologia , Escolaridade , Pais , Imageamento por Ressonância Magnética/métodos , Classe Social , Encéfalo/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-34848384

RESUMO

BACKGROUND: The presence of a 22q11.2 microdeletion (22q11.2 deletion syndrome [22q11DS]) ranks among the greatest known genetic risk factors for the development of psychotic disorders. There is emerging evidence that the cerebellum is important in the pathophysiology of psychosis. However, there is currently limited information on cerebellar neuroanatomy in 22q11DS specifically. METHODS: High-resolution 3T magnetic resonance imaging was acquired in 79 individuals with 22q11DS and 70 typically developing control subjects (N = 149). Lobar and lobule-level cerebellar volumes were estimated using validated automated segmentation algorithms, and subsequently group differences were compared. Hierarchical clustering, principal component analysis, and graph theoretical models were used to explore intercerebellar relationships. Cerebrocerebellar structural connectivity with cortical thickness was examined via linear regression models. RESULTS: Individuals with 22q11DS had, on average, 17.3% smaller total cerebellar volumes relative to typically developing subjects (p < .0001). The lobules of the superior posterior cerebellum (e.g., VII and VIII) were particularly affected in 22q11DS. However, all cerebellar lobules were significantly smaller, even after adjusting for total brain volumes (all cerebellar lobules p < .0002). The superior posterior lobule was disproportionately associated with cortical thickness in the frontal lobes and cingulate cortex, brain regions known be affected in 22q11DS. Exploratory analyses suggested that the superior posterior lobule, particularly Crus I, may be associated with psychotic symptoms in 22q11DS. CONCLUSIONS: The cerebellum is a critical but understudied component of the 22q11DS neuroendophenotype.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Humanos , Síndrome de DiGeorge/complicações , Mapeamento Encefálico/métodos , Transtornos Psicóticos/complicações , Encéfalo/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia
19.
J Int Neuropsychol Soc ; 29(8): 789-797, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36503573

RESUMO

OBJECTIVES: Data from neurocognitive assessments may not be accurate in the context of factors impacting validity, such as disengagement, unmotivated responding, or intentional underperformance. Performance validity tests (PVTs) were developed to address these phenomena and assess underperformance on neurocognitive tests. However, PVTs can be burdensome, rely on cutoff scores that reduce information, do not examine potential variations in task engagement across a battery, and are typically not well-suited to acquisition of large cognitive datasets. Here we describe the development of novel performance validity measures that could address some of these limitations by leveraging psychometric concepts using data embedded within the Penn Computerized Neurocognitive Battery (PennCNB). METHODS: We first developed these validity measures using simulations of invalid response patterns with parameters drawn from real data. Next, we examined their application in two large, independent samples: 1) children and adolescents from the Philadelphia Neurodevelopmental Cohort (n = 9498); and 2) adult servicemembers from the Marine Resiliency Study-II (n = 1444). RESULTS: Our performance validity metrics detected patterns of invalid responding in simulated data, even at subtle levels. Furthermore, a combination of these metrics significantly predicted previously established validity rules for these tests in both developmental and adult datasets. Moreover, most clinical diagnostic groups did not show reduced validity estimates. CONCLUSIONS: These results provide proof-of-concept evidence for multivariate, data-driven performance validity metrics. These metrics offer a novel method for determining the performance validity for individual neurocognitive tests that is scalable, applicable across different tests, less burdensome, and dimensional. However, more research is needed into their application.


Assuntos
Benchmarking , Simulação de Doença , Adulto , Adolescente , Criança , Humanos , Testes Neuropsicológicos , Reprodutibilidade dos Testes , Testes de Estado Mental e Demência , Psicometria , Simulação de Doença/diagnóstico
20.
Sci Adv ; 8(50): eadd2185, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516263

RESUMO

Cortical variations in cytoarchitecture form a sensory-fugal axis that shapes regional profiles of extrinsic connectivity and is thought to guide signal propagation and integration across the cortical hierarchy. While neuroimaging work has shown that this axis constrains local properties of the human connectome, it remains unclear whether it also shapes the asymmetric signaling that arises from higher-order topology. Here, we used network control theory to examine the amount of energy required to propagate dynamics across the sensory-fugal axis. Our results revealed an asymmetry in this energy, indicating that bottom-up transitions were easier to complete compared to top-down. Supporting analyses demonstrated that asymmetries were underpinned by a connectome topology that is wired to support efficient bottom-up signaling. Lastly, we found that asymmetries correlated with differences in communicability and intrinsic neuronal time scales and lessened throughout youth. Our results show that cortical variation in cytoarchitecture may guide the formation of macroscopic connectome topology.


Assuntos
Conectoma , Adolescente , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem , Neurônios , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...